

22202 Álgebra I – Ayudantía 01

Conjuntos y sus propiedades

Viernes 20 de Noviembre de 2020

3.1. Definiciones de Conjuntos

- a, b, c representarán **objetos matemáticos** (números, figuras geométricas, matrices, vectores,...). Con ello, $A = \{a, b, c\}$ será el **conjunto** que contiene a esos tres **elementos** a, b, c.
- Si consideramos al objeto a, vemos que $a \in A$: a pertenece a (o está en) el conjunto A.
- Con ese elemento a, podemos formar el conjunto $\{a\}$, que contiene un solo elemento (lo llamaremos *singleton de* a. Como $a \in A$, entonces $\{a\} \subseteq A$: el singleton de a *es subconjunto de* (o está contenido en) el conjunto A.
- Observar que *los conjuntos, al ser objetos matemáticos, pueden formar parte de otros conjuntos más grandes*. Por ejemplo, si consideramos $B = \{\{a, b, c\}; \{a\}\}$, entonces $\{a\} \in B$ y $\{\{a\}\} \subseteq B$. Lo mismo ocurre con $A = \{a, b, c\}$, cumpliéndose que $A \in B$ y que $\{A\} \subseteq B$.
- Es necesario mencionar también que **existe un conjunto sin elementos**; lo simbolizamos por $\emptyset = \{\ \}$ y lo llamaremos *conjunto vacío*.
- Finalmente, se debe mencionar que **podemos definir un conjunto de referencia**; es decir, un conjunto máximo dentro del cual trabajaremos en cada contexto. A este conjunto se le suele denominar *conjunto universo* y se le denota por U. Por ejemplo, si $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, podemos decir que $A = \{1, 3, 5, 7, 9\}$ es tal que $A \subseteq U$.

3.2. Operaciones de Conjuntos

En esta parte, se deben considerar siempre un conjunto universo U, además de los conjuntos $A,B\subseteq U$.

- Contención: $\forall x \in U \ [A \subseteq B \iff (x \in A \Rightarrow x \in B)]$
- **Igualdad:** $\forall x \in U \ [A = B \iff (x \in A \Leftrightarrow x \in B)]$ o bien $\forall x \in U \ [A = B \Leftrightarrow (A \subseteq B \land B \subseteq A)]$
- Complemento: $\forall x \in U \ [\ x \in A^{\mathbf{C}} \Longleftrightarrow x \notin A \]$
- $\bullet \ \underline{\mathbf{Unión}} \colon \forall x \in U \ \big[\in A \cup B \Longleftrightarrow (x \in A \ \lor \ x \in B) \ \big]$
- Intersección: $\forall x \in U [x \in A \cap B \iff (x \in A \land x \in B)]$
- Resta: $\forall x \in U \ [x \in A B \iff (x \in A \land x \notin B)]$

Para la resta, notar que $(x \in A \land x \notin B) \Leftrightarrow (x \in A \land x \in B^{\mathbf{C}}) \Leftrightarrow x \in A \cap B^{\mathbf{C}}$.

Por lo tanto, para el conjunto resta se tiene: $A - B = A \cap B^{C}$

Ejercicios propuestos 3.3.

- 1. Cuestione las siguientes afirmaciones:
 - **a.** $\{a, b, c, a\} = \{a, b, c\}$ **b.** $\{a\} \in \{a, \{a\}\}$

- **c.** $\{a\} \subseteq \{a, \{a\}\}\$
- 2. Sean los conjuntos $U = \{1, 2, 3, 4, \dots, 12\}, A = \{1, 3, 5, 7, 9, 11\}, B = \{2, 3, 5, 7, 11\}, C = \{2, 3, 6, 12\}$ y $D = \{2, 4, 8\}$. Determine los siguientes conjuntos:
 - **a.** $A \cup B$

c. $(A \cup B) \cap C^c$

e. C-D

b. $A \cap C$

d. A - B

- f. $(B D) \cup (D B)$
- 3. Sea $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ y sean $A, B, C \subseteq U$. Si se sabe que:
 - $A \cap B = \{2\}$
 - $A \cup B = \{1, 2, 3, 4, 5\}$

- $C \cap B = \{5\}$
- $A \cup C = \{1, 2, 3, 5, 7, 9\}$

Determine los conjuntos A, B, C.

- 4. Justificar las siguientes afirmaciones para A, B, C conjuntos:
 - **a.** $A \subseteq A \cup B$
 - **b.** $A \cap B \subseteq B$
 - **c.** $A \subseteq B \Leftrightarrow A \cap B = A$
 - $d. \ A \subseteq B \Leftrightarrow A \cup B = B$
 - e. $A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$
 - f. $B \subseteq A \land C \subseteq A \Rightarrow (B \cup C) \subseteq A$
 - g. $A (B \cup C) = (A B) \cap (A C)$

- h. $A (B \cap A) \subseteq (A \cup C) B$
- i. $(A^{\mathsf{C}} \cap B)^{\mathsf{C}} = A \cup B^{\mathsf{C}}$
- i. $A \cap (B \cup A)^{\mathsf{C}} = \emptyset$
- **k.** (A B) C = (A C) (B C)
- I. $(A \cap B) \cup (A \cap B^{\mathsf{C}}) = A$
- $\mathbf{m}. \ (A \cup B) \cap (A \cup B^{\mathsf{C}}) = A$
- 5. Simplifique las siguientes expresiones de modo que los conjuntos A, B y C aparezcan a lo sumo una vez.
 - a. $((A^{\mathsf{C}} \cup C^{\mathsf{C}}) \cap B)^{\mathsf{C}} \cup (A \cup (C \cap B)^{\mathsf{C}} \cup C)^{\mathsf{C}}$
 - b. $(A \cup (B \cup C)^{\mathsf{C}})^{\mathsf{C}} \cap (A^{\mathsf{C}} \cup (B \cap C)^{\mathsf{C}})^{\mathsf{C}}$
- 6. Dado A conjunto, presente dos demostraciones para $\varnothing \subseteq A$
- 7. Demostrar que si A, B son conjuntos, entonces:

$$B - (B - A) = A \iff A \subseteq B$$

8. Demostrar que si A, B, C son conjuntos tales que $A \cap C = \emptyset$, entonces:

$$A - B \subseteq B \cup C \implies A - B = \emptyset$$